Гравитационный манёвр

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Шаблон:Не путатьГравитацио́нный манёвр, реже пертурбацио́нный манёвр, — целенаправленное изменение траектории полёта космического аппарата под действием гравитационных полей небесных тел.

Впервые успешно осуществлён в 1959 году советской автоматической межпланетной станцией (АМС) Луна-3. Часто используется для разгона автоматических межпланетных станций, отправляемых к отдалённым объектам Солнечной системы и за её пределы, с целью экономии топлива и сокращения времени полёта. В таком применении известен также под названием «гравитационная праща» (от англ. Шаблон:Langi-en2). Может использоваться и для замедления космического аппаратаШаблон:Переход, а в некоторых случаях наиболее важное значение имеет изменение направления его движенияШаблон:Переход. Наиболее эффективны гравитационные манёвры у планет-гигантов, но нередко используются манёвры у Венеры, Земли, Марса и даже Луны.

Принцип совершения манёвра

Гравитационный манёвр подразумевает сближение совершающего орбитальный космический полёт аппарата с достаточно массивным небесным телом (планетой или спутником планеты), обращающимся вокруг того же центра масс (звезды или планеты, соответственно). Например, в окрестностях Земли можно выполнить гравитационный манёвр путём сближения с Луной, а при полётах в пределах Солнечной системы возможны гравитационные манёвры около обращающихся вокруг Солнца планетШаблон:Sfn.

Файл:Gravity assist - ru.svg
Схема гравитационного манёвра: 1) треугольник скоростей при входе, 2) треугольник скоростей при выходе, 3) ∆V — изменение гелиоцентрической скорости в результате гравитационного манёвра.

В упрощённом представленииШаблон:Ref+ гравитационный манёвр около одной из планет Солнечной системы выглядит следующим образом (см. иллюстрацию справа): космический аппарат входит в сферу действия планетыШаблон:Ref+, имея скорость Шаблон:Math относительно планеты. Эта скорость определяется разностьюШаблон:Ref+ скоростей движения аппарата Шаблон:Math и планеты Шаблон:Math относительно Солнца (см. треугольник 1). В планетоцентрической системе координат космический аппарат совершает облёт планеты по гиперболической траектории и со скоростью Шаблон:Math покидает её сферу действия. При этом скорости Шаблон:Math и Шаблон:Math равны по модулю, но имеют разное направление, отличающееся на угол Шаблон:Math. После выхода аппарата из сферы действия планеты, его гелиоцентрическая скорость Шаблон:Math является суммой скоростей Шаблон:Math и Шаблон:Math (см. треугольник 2). Обозначенная как Шаблон:Math разность скоростей Шаблон:Math и Шаблон:Math (см. фигуру 3) называется приращением скоростиШаблон:Ref+ и является результатом гравитационного манёвра.

Приращение скорости зависит не от скорости орбитального движения планеты, а от относительной скорости сближения Шаблон:Math, массы планеты и прицельной дальностиШаблон:Ref+ Шаблон:Math — чем ближе к планете пройдёт траектория космического аппарата, тем больше будет угол отклонения Шаблон:Math и значительнее приращение скорости. Минимальное расстояние ограничено необходимостью избегать контакта космического аппарата с планетой (включая её атмосферу, при наличии таковой).

Из законов небесной механики следует, что наибольшее возможное приращение скорости достигается при Шаблон:Math равной круговой орбитальной скорости в точке наибольшего сближения с планетой. Угол отклонения Шаблон:Math при этом получается равным 60°. Максимально возможный модуль вектора приращения скорости при совершении гравитационных манёвров около некоторых тел Солнечной системы представлен в таблице (значения в км/с):

Меркурий Венера Земля Луна Марс Юпитер Сатурн Уран Нептун Плутон
3,005 7,328 7,910 1,680 3,555 42,73 25,62 15,18 16,73 1,09

На практике достижимое приращение скорости зависит от цели совершаемого манёвраШаблон:Sfn.

Роль гравитационных манёвров в исследовании космического пространства

До практического освоения гравитационных манёвров исследование большей части Солнечной системы оставалось проблематичным. Скорость отлёта от Земли, достижимая с помощью химических ракет, позволяла совершать перелёты с выходом на орбиту искусственного спутника планеты назначения только до ближайших к Земле планет: Венеры и Марса. Для Меркурия, Юпитера и Сатурна было теоретически возможно лишь кратковременное посещение окрестностей планеты. Исследования более отдалённых регионов Солнечной системы и выход за её пределы с помощью химических ракет считались невозможными или непрактичными из-за слишком большого времени перелёта по энергоэффективным эллиптическим (гомановским) траекториям. Таким образом, исследование отдалённых от Земли регионов Солнечной системы в конце 50-х — начале 60-х годов XX века представлялось учёным задачей отдалённого будущего, требующей вначале разработки более эффективных реактивных двигателей (например, ядерных или электрических)Шаблон:Sfn.

Гравитационный манёвр около движущегося по орбите массивного небесного тела — планеты или крупного естественного спутника планеты — позволяет изменить кинетическую энергию космического аппарата без затрат топлива. Фактически, речь идёт о перераспределении кинетической энергии небесного тела и космического аппарата. Насколько изменяется кинетическая энергия аппарата, настолько же изменяется в обратную сторону кинетическая энергия движения небесного тела по его орбите. Поскольку масса искусственного космического аппарата исчезающе мала в сравнении с массой любого пригодного для гравитационного манёвра небесного тела (включая спутники планет), изменение орбиты этого тела оказывается пренебрежимо малымШаблон:Ref+. Таким образом, гравитационный манёвр является «бесплатным» и эффективным способом разгона, торможения или изменения направления движения космических аппаратов в целях исследования всей Солнечной системы и выхода за её пределы при существующих ракетных технологиях.

История

Уже сотни лет назад астрономам были известны изменения траекторий и кинетической энергии комет при сближениях их с массивными телами, например, с Юпитером[1]. Идея о целенаправленном использовании притяжения крупных небесных тел для изменения направления и скорости полёта космических аппаратов выдвигалась в XX веке различными авторами, зачастую независимо друг от друга.

В 1938 году один из основоположников космонавтики Ю. В. Кондратюк передал историку авиации Б. Н. Воробьёву рукопись «Тем кто будет читать, чтобы строить»Шаблон:Sfn. В ней высказывается идея об использовании при межпланетном перелёте тяготения спутников планет для дополнительного ускорения космического аппарата в начале и замедления его в конце путиШаблон:Sfn. Сам Кондратюк датировал рукопись 1918—19 годами, но по мнению Т. М. МелькумоваШаблон:Ref+ эта датировка сомнительнаШаблон:Sfn.

Ф. А. Цандер подробно описал принципы изменения направления и скорости космического аппарата при облёте планет и их спутников в статье «Полёты на другие планеты (теория межпланетных путешествий)», датируемой 1924—25 годами и опубликованной в 1961 годуШаблон:Sfn.

С 1930-х годов гравитационные манёвры стали встречаться в научной фантастике. Одним из примеров является рассказ Лестера дель Рея «Habit», впервые изданный в 1939 году. Герой рассказа выигрывает космическую гонку, использовав притяжение Юпитера для разворота своего корабля без потери скорости.

В 1954 году член Британского межпланетного общества математик Шаблон:Нп5 отметил, что ряд авторов предлагает уменьшать расход горючего при полётах на другие планеты с помощью притяжения различных тел Солнечной системы, но методы расчёта подобных манёвров недостаточно изучены[1].

В 1956 году на седьмом Международном конгрессе астронавтики итальянский учёный Гаэтано Крокко предложил план беспосадочного пилотируемого полёта по траектории Земля — Марс — Венера — Земля, рассчитанной таким образом, чтобы отклонение космического корабля притяжением Венеры компенсировало отклонение, внесённое притяжением Марса при облёте его на небольшой дистанции. План полёта предусматривал только один разгон космического корабля реактивным двигателем, а время в пути составляло ровно год, что выгодно отличало его от полёта к Марсу по гомановским траекториям. Он получил известность как «Шаблон:Нп5»[2].

В 1957 году аспирант Отделения прикладной математики [[Математический институт имени В. А. Стеклова РАН|Математического института имени Шаблон:S АН СССР]] (ОПМ МИАН) В. А. Егоров опубликовал статью «О некоторых задачах динамики полёта к Луне», которая получила мировое признаниеШаблон:Sfn. В состав этой работы входило исследование гравитационных манёвров около Луны для разгона или торможения космического аппарата. Выводы Егорова оказались близкими к выводам ЦандераШаблон:Sfn.

Шаблон:ЯкорьНа практике гравитационный манёвр был впервые осуществлён в 1959 году советской космической станцией «Луна-3», которая сделала снимки обратной стороны Луны. Изменение орбиты аппарата под действием притяжения Луны было рассчитано так, чтобы траектория его возвращения к Земле пролегала над Северным полушарием, в котором были сосредоточены советские наблюдательные станцииШаблон:SfnШаблон:Sfn. Расчёт манёвра основывался на исследовании ОПМ МИАН под руководством М. В. Келдыша, в котором использовались результаты работы ЕгороваШаблон:Sfn.

В 1961 году вопрос использования гравитационных манёвров в межпланетных полётах начал изучать аспирант Калифорнийского университета в Лос-Анджелесе Майкл Минович, проходивший интернатуру в Лаборатории реактивного движения (JPL) NASA. Для численного решения задачи трёх тел он использовал компьютер IBM 7090 с рекордным на то время быстродействием[3]. В 1963 году он опубликовал работу «The Determination and Characteristics of Ballistic Interplanetary Trajectories Under the Influence of Multiple Planetary Attractions», в которой рассматривалось использование гравитационных манёвров в межпланетных полётах, в том числе неоднократно в ходе одной миссии[4].

Исследования Миновича не получили немедленного признания коллег по JPL. Его программа и результаты вычислений не были использованы непосредственно, но в 1964 году они послужили поводом для исследования практической возможности полёта к Меркурию с использованием гравитационного манёвра у Венеры[1]. В том же году они привлекли внимание другого интерна JPL, Шаблон:Нп5, изучавшего возможность использования гравитационных манёвров для экономии горючего и времени при осуществлении полётов автоматических зондов к внешним планетам Солнечной системы. До знакомства с работой Миновича он опирался на труды Гомана и Крокко, а также на изданную в 1962 году книгу Шаблон:Нп5 «Space Flight», в которую входило описание концепции гравитационных манёвров.

Флэндро приступил к самостоятельным расчётам «реалистичных профилей миссий», которые позволили бы использовать гравитационный манёвр около Юпитера для достижения отдалённых планет при известных значениях полезной нагрузки и гарантированного времени работы космического аппарата. Рассчитывая «окна запуска» он независимо от Миновича обнаружил, что в начале 1980-х годов будет иметь место возможность облёта Юпитера, Сатурна, Урана и Нептуна одним аппаратом, благодаря редкому (один раз в 176 лет) сближению этих планет на орбитах. Чтобы воспользоваться данной возможностью, космический аппарат должен был стартовать с Земли в конце 1970-х. Флэндро представил результаты своих исследований во внутреннем издании JPL в 1965 году, а в 1966 опубликовал статью «Fast Reconnaissance Missions to the Outer Solar System Utilizing Energy Derived from the Gravitational Field of Jupiter»[4].

В 1965 году, во время совместной работы со Стэнли Кубриком над фильмом «2001: A Space Odyssey», английский писатель-фантаст Артур Кларк предложил изобразить гравитационный манёвр космического корабля «Дискавери-1» в поле тяготения Юпитера как средство достичь Сатурна. Эта идея не была реализована в кинофильме из-за сложности спецэффектов, необходимых для реалистичного изображения Сатурна, но вошла в одноимённый роман Кларка, изданный в 1968 году[5].

В 1969 году NASA был разработан проект масштабной космической программы по исследованию внешних планет. В основу проекта легли наработки Флэндро, а название «Grand Tour» было позаимствовано у Крокко. Из-за высокой стоимости проект был реализован лишь частично в 1977 году в виде космической программы «Вояджер». Шаблон:ЯкорьНо ещё до запуска «Вояджеров» гравитационный манёвр торможения в поле тяготения Венеры для достижения Меркурия был успешно осуществлён в миссии «Маринер-10», стартовавшей в 1973 году[4].

В дальнейшем гравитационные манёвры широко использовались в межпланетных миссиях различных космических агентств.

Эффект Оберта

Шаблон:Main Под гравитационным манёвром иногда понимается комбинированный способ ускорения космических аппаратов с использованием «эффекта Оберта». Суть данного способа заключается в том, что при выполнении гравитационного манёвра аппарат включает двигатель в окрестностях перицентра огибающей планету траектории, чтобы с максимальной эффективностью использовать энергию топлива для повышения кинетической энергии аппарата.

Примеры использования

Файл:Luna3-rus.svg
Траектория «Луны-3» и гравитационный манёвр
Файл:Cassini interplanet trajectory-ru.svg
Межпланетная траектория зонда «Кассини»

Гравитационный манёвр впервые был успешно осуществлён в 1959 году автоматической межпланетной станцией (АМС) Луна-3. С тех пор гравитационные манёвры широко используются в межпланетных полётах. Например, в 1974 году гравитационный манёвр использовала АМС Маринер-10 — было произведено сближение с Венерой, после которого аппарат направился к Меркурию.

АМС Вояджер-1 и Вояджер-2 использовали гравитационные манёвры у Юпитера и Сатурна, благодаря чему приобрели рекордные скорости отлёта из Солнечной системы. Запущенная в 2006 году АМС Новые горизонты совершила только один гравитационный манёвр около Юпитера, в результате чего проигрывает Вояджерам в скорости отлёта, несмотря на более высокую стартовую скорость[6].

Сложную комбинацию гравитационных манёвров использовали АМС Кассини (для разгона аппарат использовал гравитационное поле трёх планет — Венеры (дважды), Земли и Юпитера) и Розетта (четыре гравитационных манёвра около Земли и Марса).

В 1998 году для потерпевшего аварию на этапе выведения спутника связи PAS-22 была разработана и реализована программа полёта, в которой благодаря двум гравитационным манёврам около Луны удалось с ограниченным запасом топлива перевести спутник с незапланированной вытянутой эллиптической геопереходной орбиты на геосинхронную орбиту с параметрами, пригодными для коммерческой эксплуатации. Теорию перехода на геостационарную орбиту с использованием лунного поля тяготения ранее разработали в Институте прикладной математики им. М. В. Келдыша РАН. Именно эти исследования легли в основу программы спасения спутника[7].

См. также

Комментарии

Шаблон:Примечания

Примечания

Шаблон:Примечания

Источники

Литература

Ссылки

Шаблон:Внешние ссылки Шаблон:Орбиты

Шаблон:Небесная механика